국내 연구팀, 암 백신의 핵심 기술 개발

입력 2023.02.07 09:49
국내 연구팀이 항암 백신 타깃 선정에서 핵심이 되는 기술 개발에 성공했다. 항암 백신 개발의 난제로 꼽히던 면역 반응성이 있는 신생 항원을 예측하는 딥러닝 모델을 구축한 결과다.

삼성서울병원 혈액종양내과 이세훈 교수, 카이스트 바이오 및 뇌공학과 최정균 교수, 펜타메딕스 공동 연구팀은 개인 맞춤형 항암 백신에 유효한 신생 항원을 예측하는 딥러닝 모델을 구축하고 항암 반응성을 규명했다. 연구팀은 딥러닝을 이용해 T세포 면역반응을 유도할 수 있는 백신 타깃을 발굴하는 방법을 개발했다. 그 후, 대규모 암 유전체 데이터, 면역치료 환자 데이터, 동물 실험 등을 통하여 유효성을 검증했다. 이 방법은 T세포 반응성까지 고려해 예측할 수 있는 최초의 기술일 뿐만 아니라 현재 기술적 한계에 부딪힌 주조직적합성복합체 2형(MHC class II)에 대한 예측 정확도를 획기적으로 향상시켰다는 평가다.

MHC는 암세포의 돌연변이에서 나온 단백질 조각과 결합해 정상 세포와 다른 항원을 만들어 낸다. 이렇게 만들어지는 신생 항원은 이론적으로 수백 개의 종류에 달하는 것으로 알려져 있다. 하지만 면역세포인 T세포가 암세포를 알아보고 공격하도록 항원 역할을 제대로 할 수 있는 건 일부에 불과해 암 공격을 유도하는 신생 항원을 정확히 가려내는 게 중요하다.

연구팀은 이 문제를 딥러닝 방식으로 해결했다. 돌연변이 단백질과 MHC 단백질 아미노산 간 구조 결합의 특성을 학습해 T세포 반응성을 예측하는 딥러닝 모델을 개발해 유효성을 확인했다. 특히 MHC 2형의 반응성에 주목했다는 점이 높은 관심을 받고 있다. MHC는 대부분 세포에 존재하는 1형과 B세포·대식세포와 같은 항원제시세포에 존재하는 2형으로 나뉜다. 지금까지의 분석법은 신생 항원을 발굴하는 건 주로 1형을 기반으로 한다. 2형의 경우 기술적 한계로 T세포 수용체와 결합해 면역반응을 자극할 수 있는지 정확히 알 수 없었다.

이 교수는 “코로나 백신에서 mRNA 백신 플랫폼이 검증된 만큼 ‘암 백신의 상용화’에도 도움이 되기를 희망한다”고 말했다. 조대연 펜타메딕스 대표는 “이번에 개발된 플랫폼을 항암백신 개발에 적용함으로써 효율적인 ‘개인 맞춤형 항암 치료 타깃’을 도출하는 데 활용하도록 노력하겠다”고 말했다.

이번 연구는 국제저명학술지인 ‘네이처 유전학(Nature Genetics)’에 최근 게재됐다.

✔ 외롭고 힘드시죠?
암 환자 지친 마음 달래는 힐링 편지부터, 극복한 이들의 수기까지!
포털에서 '아미랑'을 검색하세요. 암 뉴스레터를 무료로 받아보실 수 있습니다.​
이 기사와 관련기사